Introduction
This vignette covers how to access the clean and tidy annual UNAIDS
Estimates from GitHub Releases. The MindTheGap package uses a cleaning
function (munge_unaids
) to process, munge, and tidy the
UNAIDS HIV Estimates from AIDSInfo and pull_unaids
to pull
the cleaned data from Google Drive.
Let’s start by loading the MindTheGap package.
Pull clean data from GitHub Releases
With munge_unaids
, the developer is left with a clean
and tidy dataset that includes a pepfar
flag to denote
whether a country is a PEPFAR country or not and an
estimate_flag
to indicate estimates that are an
approximation (previously contained a “<”). In order to make this
data accessible outside of R and cut down on the processing time, we
uploaded the clean UNAIDS data to the package
releases and wrote the function pull_unaids
for users
to easily access this data.
To use pull_unaids
, there are 2 parameters:
data_type
: This parameter returns one of the 2 datasets: “HIV Estimates” or “HIV Test & Treat”. Please note that if you want to filter to a specific indicator type (i.e. Percent or Integer), you will have to add that filter to your codefilter(indic_type == "Integer")
.pepfar_only
: if TRUE, this parameter will return a dataset of only PEPFAR countries. If you do not specify this parameter, it will default to TRUE.
In order to access the data from GitHub releases, be sure to load the
glamr
package to run the pull_unaids
function.
df_est <- pull_unaids(data_type = "HIV Estimates", pepfar_only = TRUE)
kable(head(df_est), format = "html")
year | iso | country | region | indicator | age | sex | estimate | lower_bound | upper_bound | estimate_flag | sheet | indic_type | pepfar | achv_95_plhiv | achv_95_relative | epi_ratio_2023 | epi_control |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1990 | KHM | Cambodia | Asia and the Pacific | Number AIDS Related Deaths | All | All | 100 | 100 | 100 | TRUE | HIV Estimates | Integer | TRUE | FALSE | FALSE | 0.7608939 | TRUE |
1990 | KHM | Cambodia | Asia and the Pacific | Number AIDS Related Deaths | 0-14 | All | 100 | 100 | 100 | TRUE | HIV Estimates | Integer | TRUE | FALSE | FALSE | 0.7608939 | TRUE |
1990 | KHM | Cambodia | Asia and the Pacific | Number AIDS Related Deaths | 15+ | All | 100 | 100 | 100 | TRUE | HIV Estimates | Integer | TRUE | FALSE | FALSE | 0.7608939 | TRUE |
1990 | KHM | Cambodia | Asia and the Pacific | Number PLHIV | 0-14 | All | 100 | 100 | 100 | TRUE | HIV Estimates | Integer | TRUE | FALSE | FALSE | 0.7608939 | TRUE |
1990 | KHM | Cambodia | Asia and the Pacific | Number PLHIV | 15+ | Female | 200 | 200 | 200 | TRUE | HIV Estimates | Integer | TRUE | FALSE | FALSE | 0.7608939 | TRUE |
1990 | KHM | Cambodia | Asia and the Pacific | Number PLHIV | 15+ | All | 500 | 500 | 500 | TRUE | HIV Estimates | Integer | TRUE | FALSE | FALSE | 0.7608939 | TRUE |